Investigation of AMOC in two
GCMs using Linear Inverse
Modeling

C. Penland, L. Zanna, C. McColl, D. MacMartin, E. Tzipermann, L. Hartten



Consider two models: CCSM4 and ESM2 M

* Extensive analysis precludes a large number of models.

* These two models have very different AMOC behavior, so we look for
commonalities and differences in variability and predictability.

* Region considered: Atlantic Ocean northward of 20S.

* Consider five fields as state variables (10 PCs per variable):
* Wyoek Tupper, Tiower, Supper, Siower (Heat Flux and Fresh Water Flux vary too rapidly)



Governing equation used for analysis:
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Let G(t) = exp(Lt) =1 + (Lt) + (Lt)%/2! + (Lt)3/3! + ...

Given an initial condition x,, the predictable dynamics are just
x(r+7) = G(1) x,(1).

Further, if G(t) is asymmetric, the initial condition x,(¢) giving the largest
amount of growth at time 7+t is the right singular vector of G(t) (i.e., an
eigenvector of G'G(t), called an “optimal structure”) and the amplification
factor A is the corresponding eigenvalue.

We estimate G(t) from the lagged covariance statistics of V' e Tipper Tiower
S and S, ., in a reduced space (10 PCs per variable).
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The 8-year prediction of AMOC in ESM2M

would have a correlation skill score up to 0.5. v —
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The 12-year prediction of AMOC in CCSM4 would

. . t=6y)
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Eesvam 1S not highly
correlated with either

HF or FW

Covariance matrix Q = <&&'>dt of stochastic forcing

a) &(1) = (x(t+A) — x(t-A))12A — Lx(¢)

b) —Q = L<x(H)x(PT> + <x(£)x(PT>LT
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Eccsms has about 20%
of its variance explained
by HF and FW



Conclusions:

e The AMOC in ESM2M is much more periodic than that in CCSM4. The spectrum of AMOC is dominated by
higher frequencies in ESM2M than in CCSM4. Still, AMOC in CCSM4 appears more predictable than in

ESM2M.

* High amplification of AMOC in both models is dominated by characteristic low level patterns of temperature
and salinity.

* The oscillation in ESM2M is likely to be nonlinear and self-sustained (no /2 phase difference). The
frequency of the oscillation is about 12 years.

* The spectrum of CCSM4 is dominated by lower frequencies (periods of 50-250 yrs).

* (Not shown) These results don’t strongly depend on whether the Euclidean norm or the Wy, — norm is used
in estimating the left and right singular vectors.

e (Also not shown) Including annually-averaged fresh water FW and surface heat flux HF in the state vector
gives inconsistent results because these variables vary faster than on the annual timescale.

* Stochastic forcing affects Wyog more directly than it does the other state variables (Typ, Tiows Sups Siow)- Siow
the dominant predictor of AMOC in both models, does not appear to be stochastically forced.

* Monthly-scale FW and HF don’t seem to provide much stochastic forcing to ESM2M; they provide about 20%
of the stochastic forcing to CCSMA4.

e The rapid (sub-annual) variability of Wy.gcin CCSM4 appears to be real rather than an artifact of the analysis.
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